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We present new MUSCL techniques associated with cell-centered finite volume method on
triangular meshes. The first reconstruction consists in calculating one vectorial slope per
control volume by a minimization procedure with respect to a prescribed stability condi-
tion. The second technique we propose is based on the computation of three scalar slopes
per triangle (one per edge) still respecting some stability condition. The resulting algorithm
provides a very simple scheme which is extensible to higher dimensional problems.
Numerical approximations have been performed to obtain the convergence order for the
advection scalar problem whereas we treat a nonlinear vectorial example, namely the Euler
system, to show the capacity of the new MUSCL technique to deal with more complex
situations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Large numerical simulations in industrial framework require efficient but rather simple numerical methods to face the
modelling complexity while making easier the implementation. Flexibility is also required to quickly adapt the computation
code to new conditions and models. High-resolution methods such as ENO, WENO or Discontinuous Galerkin methods pro-
vide very good accuracy. However, the MUSCL technique is more popular in the industrial context due to its natural simplic-
ity and adaptation capacity to respond to modelling evolutions and complexifications.

Monotone Upstream Scheme for Conservation Law technique (MUSCL technique) has been introduced by Van Leer [27]
for one-dimensional hyperbolic problems. The main idea is a piecewise linear reconstruction of the solution to achieve
higher accurate schemes still preserving the stability: the maximum principle or the Total Variation Diminishing (TVD) prop-
erty for instance. Initially elaborated for one-dimensional scalar problems, the MUSCL technique combined with a conserva-
tive scheme had to preserve the Total Variation of the solution. To this end, slopes are limited to prevent spurious oscillations
or overshooting of the numerical approximations [25] and numerous limiters have been proposed [23] in the one-dimen-
sional framework to achieve high-resolution TVD schemes. A first extension of the MUSCL technique to higher dimensions
has been proposed using structured meshes where the MUSCL procedure is applied in each direction [8] but the generaliza-
tion of the Total Variation Diminishing constraint for higher dimensional geometries makes the scheme to be a first-order
method [13]. To get around this negative result, a new class of positive schemes have been introduced [24] which ensures
a local maximum principle. The concept of Local Extremum Diminishing was then developed by Jameson [15] where he gen-
eralizes the notion of incremental scheme with non-negative coefficients for the multi-dimensional situation. For scalar
hyperbolic problem, maximum principle naturally derives from the incremental expression and extensions in the Finite Ele-
ment context have been proposed by Kuzmin and Turek [18].
. All rights reserved.
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An other important point that the reconstruction technique has to address concerns the numerical approximations of
hyperbolic system solutions. For the Euler system, density and pressure have to be non-negative to be physically admissible
and the shallow-water system requires a non-negative height of water. Numerical approximations have to preserve the den-
sity and pressure positivity and specific numerical flux have been designed for this purpose [11]. Extension of the positivity
preservation criteria both for second-order finite volume schemes have been also developed [22].

To handle more flexible refinements and allow discretization of complex bounded domains, new MUSCL methods for
unstructured meshes have been considered based either on the cell-centered representation [16,9,2] or on the vertex cen-
tered representation [5,6]. A linear function is constructed on each element using a gradient prediction which should be lim-
ited to prevent oscillations of the numerical solutions [10] (see also [12,19,20] for a mathematical study of the high-order
schemes).

The classical MUSCL technique consists of two steps. First, a predicted gradient is computed for each element of the mesh
using the neighbouring values. Then the gradient is modified to respect some Maximum Principle or Total Variation Dimin-
ishing constraint and provide a vectorial slope on the element. New values are therefore computed on each edge of the ele-
ment using the linear reconstruction. Finally, an approximation of the flux crossing the interface is performed by employing
the two reconstructed values situated on both sides of the edge combined with a monotone numerical flux function. To avoid
the predictor–corrector algorithm and obtain some optimal reconstruction, we propose to build the vectorial slope on each
element by minimizing a convex functional under stability constraints. The idea is to optimize the slope while respecting the
Maximum principle or the Total Variation Diminishing property. We intend in this way to produce the best gradient approx-
imation which respects the stability constraint.

The MUSCL method presented above will be referred to as monoslope method since the reconstructed values are ob-
tained using the same vectorial slope on each element. We also introduce a new class of MUSCL method named multislope
method where we use specific scalar slope for each interface. For a given element, we consider a set of normalized vectors
and we use the neighbouring values to compute the scalar slopes representing an approximation of the directional deriva-
tives. The slopes are modified afterwards to respect some stability constraint and finally, the reconstructed values are com-
puted on each edge using the corrected slopes. The main advantage of the method is that we only deal with one-dimensional
situations and, as we shall show in the following sections, the scalar slopes are very simple to compute even for higher
dimensional geometries.

The remainder of the paper is organized as follows. In Section 2, we introduce the notations we shall use in the sequel to
describe the finite volume process on triangular meshes for two-dimensional geometries and we review some classical MUS-
CL-type methods. In particular, we give a precise description of the Maximum Principle domain and the Total Variation
Diminishing domain that we employ to keep the stability condition. Section 3 is devoted to a new monoslope MUSCL method
while we describe the multislope MUSCL technique in Section 4. Numerical results are presented for the linear advection
problem and the Euler system in Section 5.
2. Second-order monoslope MUSCL method

To illustrate the MUSCL reconstruction, we here introduce the classical advection problem but more complex problems
such as nonlinear vectorial systems can of course be considered.

Let X � R2, be a polygonal open bounded set of R2; T > 0. We denote by Vðt; xÞ a given R2 vectorial valued function de-
fined on Q T ¼ ½0; T� �X. For t 2 ½0; T�, we set
C�ðtÞ ¼ fx 2 @X; Vðt; xÞ � nðxÞ < 0g; CþðtÞ ¼ fx 2 @X; Vðt; xÞ � nðxÞP 0g;
with x ¼ ðx1; x2Þ a generic point of X and n the outwards normal on the boundary @X.
We consider the advection problem: find Uðt; xÞ a real valued function defined on QT such that
@tU þr � ðVUÞ ¼ 0 in �0; T½�X;

Uðt ¼ 0; �Þ ¼ U0ð�Þ in X;

Uðt; �Þ ¼ Ubðt; �Þ in C�ðtÞ; t 2�0; T�;
where U0 and Ub are given functions.
To deal with the numerical approximation, we introduce the following ingredients (see Fig. 1). T h is a discretization of X

with triangles Ki of centroid Bi; i ¼ 1; . . . ;N where N is the number of mesh elements. For a given i; mðiÞ represents the index
set of the common edge elements Kj 2 T h; j 2 mðiÞ where Sij ¼ Kj \ Ki stands for the common edge with midpoint Mij.

We assume furthermore that the mesh satisfies the following hypothesis (see Fig. 2):
ðHÞ
For any Ki 2 T h such that jmðiÞj ¼ 3; point Bi is strictly
inside the convex set defined by the points Bj; j 2 mðiÞ:

�

Remark 1. Hypothesis ðHÞ yields that any two of the three vectors BiBj; j 2 mðiÞ defines a basis of R2. Such a property is
essential to define the monoslope MUSCL method and it is less restrictive than Hypothesis ðHÞ. Nevertheless, the multislope



Fig. 1. Notations and conventions of the mesh elements and edges.

Fig. 2. Configuration satisfying the hypothesis ðHÞ (on left). Configuration which not satisfies the hypothesis ðHÞ (on right).
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MUSCL method requires that the Bi point has positive barycentric coordinates with respect to the three other points
Bj; j 2 mðiÞ. This last point motivates the introduction of Hypothesis ðHÞ.

All the Delaunay meshes we have used to perform numerical tests satisfy Hypothesis ðHÞ but we do not manage to relate
the Delaunay condition: the triangle circumcircle formed by three nodes does not contain the other nodes.

If Lij represents the line containing the edge Sij, point Q ij is defined as the intersection between the segment ½Bi;Bj� and the
line Lij. Note that Q ij does not belong a priori to Sij but only to Lij. For a given edge Sij;nij represents the outward normal of Ki

pointing to Kj and nji ¼ �nij.
We will use a cell-centered finite volume method where control volumes are the triangles. The sequence ðtnÞn defines a

time discretization of ½0; T� with tnþ1 ¼ tn þ Dt. Let Un
i stand for an approximation of the mean value of U at time tn on the

element Ki. The conservative first-order finite volume formulation is given by
jKij Unþ1
i ¼ jKij Un

i � Dt
X
j2mðiÞ
jSijj Fij Un

i ;U
n
j

� �
; ð1Þ
where FijðUi;UjÞ is a numerical flux from Ki to Kj at interface Sij.
For the advection case, classical numerical flux functions are the Lax–Friedrichs flux or the upwind flux:
FLF
ij Un

i ;U
n
j

� �
¼ 1

2
Vðtn;BiÞ � nijU

n
i þ Vðtn;BjÞ � nijU

n
j

� �
� k Un

j � Un
i

� �
;

Fupwind
ij Un

i ;U
n
j

� �
¼ ½Vðtn;MijÞ � nij�þUn

i þ ½Vðtn;MijÞ � nij��Un
j ;
where ½��þ represents the positive part and k is a positive constant to guarantee the scheme stability.

2.1. Classical MUSCL methods

First-order schemes give a poor approximation and induce high viscosity effect. A second-order scheme provides a better
approximation and manages to reduce the viscous smoothing effect in the vicinity of the shocks.

The popular techniques consist in a local linear reconstruction (see [3,12,26]). Assuming that a constant piecewise
approximation Un

h ¼ Un
i

� �
i of U at time tn is known, we construct a new linear piecewise approximation eUn

h in the following
way
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eUn
hðXÞ ¼ Un

i þ ai � BiX; X 2 Ki; ð2Þ
where BiX stands for the vector X� Bi; ai 2 R2 is the vectorial slope we have to construct, ai � BiX is the inner product be-
tween BiX and ai.

Remark that such a linear reconstruction satisfies conservation property
Z
Ki

eUn
hðXÞdX ¼ jKijUn

i ;
since the centroid point Bi is chosen as reference point.
Given a point Xij on the common edge Sij, we set
Un
ij ¼ Un

i þ ai � BiXij; Un
ji ¼ Un

j þ aj � BjXij: ð3Þ
We classify this kind of reconstruction as monoslope method since we use one slope per element: the same slope ai pro-
duces all values Un

ij, j 2 mðiÞ.
Two useful choices for point Xij are Q ij or Mij (see Fig. 1). The first one is natural from a geometrical point of view since it

corresponds to the linear interpolation between Bi and Bj whereas the second one is natural from the integration point of
view since the numerical integration with the midpoint rule is exact for linear functions along the edge Sij.

To obtain a second-order method, we then substitute the numerical flux Fij Un
i ;U

n
j

� �
by Fij Un

ij;U
n
ji

� �
in relation (1) and

obtain:
jKij Unþ1
i ¼ jKij Un

i � Dt
X
j2mðiÞ
jSijj Fij Un

ij;U
n
ji

� �
: ð4Þ
Several slope evaluations have been proposed (see [12,14,3] for an exhaustive list), where two leading requirements have
to be satisfied:

(C1) the linearly reconstructed function eUh satisfies eUh ¼ U if the function U is linear. In this paper, this property will be
referred to as linear consistency of the reconstruction;

(C2) the reconstruction has to respect a maximum principle to avoid overshooting leading to a discrepancy of the numer-
ical approximation.
Remark 2. The case where an element shares a common side with the boundary is treated using ghost cells. Indeed, let us
assume that K has a side S on the boundary, we construct a fictitious element eK which shares the same side (by symmetry for
example). We then prescribe the boundary condition on eK and we are back in the situation where the element is strictly
inside the domain.
2.1.1. Gradient methods
Denote by Kj1 ;Kj2 ;Kj3 the three adjacent triangles of Ki. We consider the three following hyperplans in the x1; x2;U space:

hyperplane pi;1 is defined by the points Bi;Bj2 ;Bj3 with elevations Ui;Uj2 ;Uj3 and pi;2;pi;3 are obtained in the same way. The
hyperplane p1;2;3 is defined by the points Bj1 ;Bj2 ;Bj3 with elevations Uj1 ;Uj2 ;Uj3 (see Fig. 3).

For example, pi;1 is given by equation
u� Un
i

� �
¼ Gi;1 � BiX;
Fig. 3. Plane p1;2;3 representation.
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where Gi;1 2 R2 while p1;2;3 is given by
u� Un
j1

� �
¼ G1;2;3 � Bj1 X:
A first choice consists in taking the slope ai ¼ G1;2;3 and we obtain a linear consistent reconstruction. Other possible
choices use a combination of Gi;1;Gi;2;Gi;3, setting
ai ¼ rðGi;1;Gi;2;Gi;3Þ:
The linear consistency is obtained if and only if a ¼ rða; a; aÞ for all a 2 R2.

2.1.2. Minimization method
In Ref. [7], the authors consider the hyperplane minimizing the distance with the four points ðBi;UiÞ; ðBj;UjÞ; j 2 mðiÞ. One

has to seek a vector GLS using a Least Square Method, that is to say which minimizes the functional
EðaÞ ¼
X
j2mðiÞ

Un
j � Un

i þ a � BiBj
� �� �2

: ð5Þ
Existence and uniqueness of the minimum is obvious since the functional is strictly convex.
Moreover, if U is linear, the four points lie in the same hyperplane and the minimum corresponds to the gradient of U,

hence we get the linear consistency of the reconstruction.

2.2. The stability conditions

Let us consider two adjacent triangles Ki and Kj. To avoid numerical artefacts in the vicinity of large gradients (overshoot-
ing or spurious oscillations), one imposes that the reconstructed values Uij and Uji on Sij satisfy some stability property. To
this end, we introduce the following conditions:

(1) The L1 stability condition (Maximum Principle constraint or MP constraint):
min Un
i ;U

n
j

� �
6 Un

ij;U
n
ji 6 max Un

i ;U
n
j

� �
: ð6Þ
(2) The Total Variation Diminishing-like condition (TVD constraint):
if Un
i 6 Un

j then Un
i 6 Un

ij 6 Un
ji 6 Un

j : ð7Þ
The last condition is named TVD constraint since the property (7) implies the preservation of the BV norm between the
initial piecewise constant function and its piecewise linear reconstruction. Moreover, relation (7) implies relation (6) so the
Total Variation Diminishing-like condition is a subcase of the L1 stability condition.

The slope ai provided by one of the above methods does not a priori satisfy the stability condition. We impose the stability
by multiplying the slope by a limiter /i 2 R such that the values Un

ij and Un
ji obtained with the new slope ~ai ¼ /iai satisfy one

of the two stability conditions. In particular, if /i ¼ 0, we find again the first-order scheme.
In the case of a linear solution, a predicted slope process which satisfies condition (C1) provides a slope equal to the gra-

dient of the linear function. In this particular case, the limiting procedure has no impact since the predicted slope respects
the two stability constraints and one has /i ¼ 1. Therefore, it is natural to choose the highest value of /i 2 ½0;1� such that the
reconstruction satisfies a prescribed stability condition.

2.2.1. The Maximum Principle domain
For a given element Ki, we define the Maximum Principle domain (MP domain) as
MPi ¼ a 2 R2; min Un
j � Un

i ;0
� �

6 a � BiQ ij 6 max Un
j � Un

i ;0
� �

; j 2 mðiÞ
n o

:

If ai 2 MPi then Un
ij ¼ Un

i þ ai � BiQ ij satisfies stability condition (6) and the converse is also true.
For the sake of simplicity, we introduce a new set of vectors
sk ¼ sgn Un
jk
� Un

i

� �
BiQ ijk

; k ¼ 1;2;3;
where sgnðxÞ ¼ 1 for x P 0;
�1 for x < 0:

�
The MPi region is now simply given by
MPi ¼ fa 2 R2; 0 6 a:sk 6 ck; k ¼ 1;2;3g;
with ck ¼ Un
i � Un

jk

��� ���; k ¼ 1;2;3.
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We require that sgn(0) is non-zero in order to extend the equivalence:
a � BiQ ijk
¼ 0() a � sk ¼ 0;
to the particular situation Un
jk
¼ Un

i .
Hypothesis ðHÞ implies that any couple of the three vectors sk; k ¼ 1;2;3 defined a basis of the R2 space. Therefore we can

express one vector from the two others and we have the following unique expansions with non-zero coefficients:
s1 ¼ a12s2 þ a13s3; ð8Þ
s2 ¼ a21s1 þ a23s3; ð9Þ
s3 ¼ a31s1 þ a32s2: ð10Þ
A simple computation gives the following proposition.

Proposition 3. We have the relations
alm aml ¼ 1; ð11Þ
alm amk ¼ �alk ð12Þ
for any circular permutation ðl;m; kÞ of (1,2,3).

Proof. To check properties (11) and (12), let us consider the decomposition of sl
sl ¼ almsm þ alksk:
Thanks to hypothesis ðHÞ; sl is neither collinear to sm nor to sk, hence coefficients alm and alk do not vanish. The relation can
be rewritten
sm ¼
1

alm
sl �

alk

alm
sk ¼ amlsl þ amksk;
which gives relations (11) and (12) by identification thanks to the uniqueness of the decomposition. h

We deduce that MPi domain is characterized only by coefficients a and c. If at least two of the three c coefficients vanish,
we easily deduce MPi ¼ fð0;0Þg. We now consider the other situations.

Proposition 4. Assume that one coefficient, say ck, vanishes while the two others, say cl and cm, are not zero. Then we have
MPi ¼ fð0;0Þg () alm < 0:
Proof. Let us first remark that if a 2 R2 with a � sk ¼ 0, then we have:
a � sl ¼ alka � sk þ alma � sm ¼ alma � sm: ð13Þ
[�] Suppose that alm < 0 and let a 2 MPi.
Since ck ¼ 0, relation (13) is satisfied. From condition a 2 MPi, we have the relations a � sl P 0 and a � sm P 0. It follows
that a � sm ¼ a � sl ¼ 0 since we have alm < 0. Hence a ¼ ð0; 0Þ.
[)] Conversely, suppose that alm P 0.
Since all the coefficients are non-vanishing, we have alm > 0. We shall now construct a non-zero vector of MPi. To this end,
consider a 2 R2 such that a � sk ¼ 0 and a � sl ¼minðcl;almcmÞ 2�0; cl�. We obtain a non-zero vector which satisfies
0 < a � sm ¼ 1

alm
a � sl 6 cm, then a 2 MPi. h
Remark 5. If only one of the ck is zero, the MPi domain is reduced to the null vector or to a segment.

Proposition 6. Assume that all the coefficients ck are positive, k ¼ 1;2;3. Then the following assertions are equivalent:

(i) a12 < 0 and a13 < 0.
(ii) a21 < 0 and a23 < 0.

(iii) a31 < 0 and a32 < 0.
(iv) MPi ¼ fð0;0Þg.
Proof. Equivalences between (i), (ii) and (iii) derive from relations (11) and (12). It remains to prove the equivalence
between (i) and (iv). To this end, let us assume that assertion (i) holds and let a 2 MPi. One has
a � s1 ¼ a12a � s2 þ a13a � s3; with a12a � s2 6 0 and a13a � s3 6 0: ð14Þ
It follows that a � s1 6 0, hence that a � s1 ¼ 0 since a � s1 P 0. Relation (14) now gives a � s2 ¼ a � s3 ¼ 0 and we conclude
that a is the null vector because s1; s2 is a basis.
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Conversely, let us assume that (i) does not hold. We shall construct a non-zero vector a such that a 2 MPi.
Since assertion (i) is wrong, we have a12 > 0 or a13 > 0.
Suppose a12 > 0 for example. Let a be the vector of R2 such that a � s3 ¼ 0 and a � s2 ¼ min c1

a12
; c2

� �
2 �0; c2�. We obtain a

non-zero vector which satisfies 0 < a � s1 ¼ a12 a � s2 6 c1, then a 2 MPi. h

Under the same assumption as the above proposition, we have the following corollary using relation (12).

Corollary 7. Assume that all the coefficients ck are positive, k ¼ 1;2;3. Then the MPi domain is not reduced to the null vector if
and only if one of the three following assertions holds

(i) a12 > 0 and a13 > 0,
(ii) a21 > 0 and a23 > 0,

(iii) a31 > 0 and a32 > 0.
Proof.

[)] We first assume that MPi domain is not reduced to the null vector. From Proposition 6, we deduce that a12 P 0 or
a13 P 0, hence a12 > 0 or a13 > 0 since the coefficients are non-zero. If both coefficients are positive, assertion (i) is right
otherwise one of the two coefficients is negative (says a13 < 0). From relations (11) and (12) we have a21 > 0 and a23 > 0
and assertion (ii) holds.
[�] Conversely, if for example a12 > 0 and a13 > 0 then Proposition 6 immediately implies that MPi domain is not
reduced to the null vector. h

When MPi domain is not reduce to the null vector, one of the three assertions of Corollary 7 holds. In this case, we adopt
the following convention:
Convention. We choose the local indexation such that a31 > 0 and a32 > 0.

The MPi domain is a convex polygonal set (see Fig. 4) which consists in the intersection of the three bands limited by the
lines
dk ¼ fa 2 R2; a � sk ¼ ckg; k ¼ 1;2;3; ð15Þ
dk ¼ fa 2 R2; a � sk ¼ 0g; k ¼ 1;2;3: ð16Þ
2.2.2. The slope limiter
Let ai be a predicted gradient obtained, for example, by one of the methods presented in Section 2.1. The Maximum Prin-

ciple constraint yields that ai has to be in the MPi domain. If not, we reduce the slope by a limiter /i 2 ½0;1� such thateai ¼ /iai 2 MPi. The most classical limiting procedure (see [12,3]) consists in constructing the three limiters
/i;k ¼
max 0; ck

ai �sk

� �
if ai � sk–0;

1 if ai � sk ¼ 0:

(
ð17Þ
Fig. 4. Maximum principle domain.
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Taking /i ¼minð1;/i;1;/i;2;/i;3Þ, we set eai ¼ /iai 2 MPi. If for one local subscript k; ai � sk < 0, the limiter is zero and we
obtain a first-order method. Numerical experiments indicate that such a phenomena often occurs resulting in a poor approx-
imation accuracy [7,14]. For example, let us consider a configuration where the predicted slope G1;2;3 is on the left side of line
d1 while GLS stands on the right side (see Fig. 4). Applying the limiting procedure (17) yields that /i > 0 if we choose ai ¼ GLS

whereas /i ¼ 0 if we choose ai ¼ G1;2;3. In the first case, the resulting slope provides a second-order scheme but the second
situation reduces to a first-order scheme.

To avoid the discrepancy, some authors propose to limit the predicted gradient using a orthogonal projection of point ai

on the boundary of the MPi domain (see [14]).

2.2.3. The TVD domain
We now consider the more restrictive TVD constraint (7) using the same framework introduced for the MP constraint. For

a given edge Sij, the TVD constraint involves the two slopes ai and aj which also depends on the neighbouring elements lead-
ing to a coupling between all the slopes. To avoid the complex interactions between the slopes, we introduce a more restric-
tive definition of the TVD constraint such that ai is computed independently of the other slopes but only depends on the data
of the three neighbouring elements. The requirement on slope ai is that reconstructed values Un

ij and Un
ji (with j 2 mðiÞ) have to

satisfy
if Un
i 6 Un

j then Un
i 6 Un

ij 6 Uref
ij 6 Un

ji 6 Un
j ; ð18Þ
where Uref
ij is the reference value at point Q ij defined by
Uref
ij ¼ Un

i þ
jBiQ ijj
jBiBjj

Un
j � Un

i

� �
¼ Un

j þ
jBjQ ijj
jBjBij

Un
i � Un

j

� �
¼ Uref

ji : ð19Þ
We define the TVDi domain by
TVDi ¼ a 2 R2; min Uref
ij � Un

i ;0
� �

6 a � BiQ ij 6 max Uref
ij � Un

i ; 0
� �

; j 2 mðiÞ
n o

:

The TVDi domain is also characterized by
TVDi ¼ fa 2 R2; 0 6 a � sk 6 lk; k ¼ 1;2;3g;
with lk ¼ Un
i � Uref

ijk

��� ���; k ¼ 1;2;3.

The TVDi domain is a convex polygonal set which consists in the intersection of the three bands limited by the lines
dk ¼ fa 2 R2; a � sk ¼ lkg; k ¼ 1;2;3; ð20Þ
dk ¼ fa 2 R2; a � sk ¼ 0g; k ¼ 1;2;3: ð21Þ
To conclude the section, notice that
lk ¼
jBiQ i;jk

j
jBiBjk j

ck 6 ck;
hence, we deduce that the TVDi domain is a subset of the MPi domain and the limiting techniques presented for the MPi do-
main can directly be adapted to the TVDi domain using lk in place of ck.

3. A new monoslope method

All the second-order schemes presented above are developed following two steps: first we compute a predicted slope and,
secondly, we use a limiting procedure. We propose here a new method where we build the slope in only one procedure in
which we optimize the slope under the MP constraint or the TVD constraint.

As we state in the convention presented in Section 2.2.1, we choose the local indexation such that the coefficients a31 and
a32 are positive.

3.1. Minimization under the TVD constraint

We only present the construction of the optimized slope respecting the TVD constraint. The construction of the optimized
slope under the MP constraint can also been considered and adapted.

3.1.1. Problem formulation
Let us consider a triangular control volume Ki. It is clear that if U is a linear function defined by UðXÞ ¼ U0 þ L � X, then

UðQ ijÞ ¼ UðBiÞ þ L � BiQ ij ¼ Uref
ij for all j 2 mðiÞ. For the general case, we wish to obtain a slope ai on Ki for which deviations

Ui þ ai � BiQ ij � Uref
ij are as close as possible to 0. Moreover, the slope should provide a reconstruction which respects the sta-

bility condition.
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We then compute the slope by using a least square method under the TVD constraint on element Ki and the optimization
problem reads:

find the slope ~ai minimizing the functional
EiðaÞ ¼
X
j2mðiÞ

Uref
ij � ðUi þ a � BiQ ijÞ

� �2
with a 2 TVDi: ð22Þ
Using the notations introduced in Section 2.2, we can rewrite the minimization problem as
EiðaÞ ¼
X

k¼1;2;3

ðlk � a � skÞ2 ð23Þ

with 0 6 a � sk 6 lk; k ¼ 1;2;3: ð24Þ
Remark 8. We can also consider another minimization problem using the minimization functional (5). If we add now the MP
constraint (see [4]), the optimization problem then reads: find the slope ~ai minimizing the functional
EiðaÞ ¼
X
j2mðiÞ
ðUj � ðUi þ a � BiBjÞÞ2 with a 2 MPi: ð25Þ
Note that problem (22) is not equivalent to problem (25).

Since the functional (23) is strictly convex and the domain defined by (24) is convex and bounded, we get the existence
and the uniqueness of the minimum ~ai. With the slope in hand, we build the new predicted values at any given collocation
point Xij
Uij ¼ Ui þ ~ai � BiXij; j 2 mðiÞ: ð26Þ
3.1.2. Computation of the optimal slope
We are now interested in finding the minimum ea of the functional (23) under constraints (24). To simplify the notations,

we skip the index i in this subsection.
We first note that ~a is obviously the null vector if TVD ¼ fð0;0Þg. Note that if l3 ¼ 0, we have TVD ¼ fð0;0Þg by the index-

ation convention.
From now on we make the assumption that l1;l2 and l3 are positive. The case where l1 ¼ 0 or l2 ¼ 0 will also be trea-

ted further.

Proposition 9. Let �a be the minimum of EðaÞ without constraint then �a is inside the triangle T123 formed by the three lines
dk; k ¼ 1;2;3 defined by relation (20). In particular, if the triangle is not reduced to a point, �a is strictly inside the triangle.
Proof. Let us set G1 ¼ d2 \ d3 (see Fig. 5). We then have
G1 � s2 ¼ l2; G1 � s3 ¼ l3:
We define in the same way G2 ¼ d1 \ d3 and G3 ¼ d1 \ d2 satisfying
G2 � s1 ¼ l1; G2 � s3 ¼ l3; G3 � s1 ¼ l1; G3 � s2 ¼ l2:
If G1;G2 and G3 belong to the same line then hypothesis ðHÞ yields G1 ¼ G2 ¼ G3 ¼ G, thus �a ¼ G since Eð�aÞ ¼ 0 in this
exceptional case.
Fig. 5. The triangle T123 is above point G3 (left). The triangle T123 is under point G3 (right).
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We now assume that the three points define a non-degenerated triangle T123 and we seek �a ¼ k1G1 þ k2G2 þ k3G3 using
the barycentric coordinates with k1 þ k2 þ k3 ¼ 1.

Existence and uniqueness of the minimum �a is clear since EðaÞ is strictly convex and �a has to satisfy the linear system
X
k¼1;2;3

ðlk � �a � skÞsk ¼ 0: ð27Þ
Using the barycentric coordinates property and the definition of Gk, we get
X
k¼1;2;3

kkðlk � Gk � skÞsk ¼ 0:
The inner product between the last relation and vector G1 gives
k1ðl1 � G1 � s1ÞG1 � s1 þ k2ðl2 � G2 � s2Þl2 þ k3ðl3 � G3 � s3Þl3 ¼ 0:
Using also vectors G2 and G3, we obtain
k1ðl1 � G1 � s1Þl1 þ k2ðl2 � G2 � s2ÞG2 � s2 þ k3ðl3 � G3 � s3Þl3 ¼ 0;
k1ðl1 � G1 � s1Þl1 þ k2ðl2 � G2 � s2Þl2 þ k3ðl3 � G3 � s3ÞG3 � s3 ¼ 0:
From the three relations, we deduce
k1ðl1 � G1 � s1Þ2 ¼ k2ðl2 � G2 � s2Þ2 ¼ k3ðl3 � G3 � s3Þ2: ð28Þ
Since triangle T123 is not reduced to a point, the quantities ðlk � Gk � skÞ2 are positive and thus the coordinates kk have the
same sign. Moreover, the condition k1 þ k2 þ k3 ¼ 1 yields that kk > 0, hence �a is strictly inside the triangle. h

Remark 10. An explicit calculation of coefficients kk provides an expression independent of Ui and Uj:
k1 ¼
a2

31

1þ a2
31 þ a2

32

; k2 ¼
a2

32

1þ a2
31 þ a2

32

; k3 ¼
1

1þ a2
31 þ a2

32

:

Remark 11. The exceptional situation where the triangle T123 is reduced to a point corresponds to the case where the four

points Bi;U
n
i

� �
; Bj;U

n
j

� �
; j ¼ j1; j2; j3 lie in the same hyperplane of the ðx1; x2;UÞ space. In this case, the optimal slope ~a under

constraint corresponds to the optimal slope �a without constraint and the reconstruction is consistent for linear functions.

Corollary 12. If triangle T123 is not reduced to a point, the minimum without constraint �a does not satisfy the TVD constraint.
Furthermore the minimum ~a with constraint satisfies, at least, one of the six constraints: ~a � sk ¼ 0 or ~a � sk ¼ lk with
k ¼ 1;2;3, i.e. ~a 2 @TVD.

Proof. We notice that TVD \ T123 is reduced to the point G3 or is included in the segment ½G1;G2� whether d3 is above
(l3 P G3 � s3, see Fig. 5 left) or under (l3 6 G3 � s3, see Fig. 5 right) the point G3. Since �a is strictly inside T123, we conclude
that �a R TVD.

Finally, if ~a is strictly inside the TVD domain, then no constraint is saturated and we have rEð~aÞ ¼ 0 thus ~a ¼ �a which is
not possible since �a R TVD. h

Proposition 13. The minimum under constraint ~a belongs to d1; d2 or d3.

Proof. Let us denote by s?1 the orthogonal normalized vector to s1 such that s?1 � s3 > 0. Then the half-line on line d1 with
(0,0) as endpoint which touches the TVD domain is characterized by ks?1 with k P 0 and we have
Eðks?1 Þ ¼ l2
1 þ ðl2 � ks?1 � s2Þ2 þ ðl3 � ks?1 � s3Þ2:
Moreover, we have s?1 � s3 > 0 by definition and we also have s?1 � s2 > 0 since a32 is positive. We deduce that E decreases
as k increases from 0 till ks?1 reaches the first of the two intersection points d1 \ d2 or d1 \ d3. In conclusion, the minimum ~a
will belong to d1 \ TVD only if it is equal to intersection point d1 \ d2 or d1 \ d3. The same arguments hold using vectors s?2
and ~a will belong to d2 \ TVD only if it is equal to intersection point d2 \ d1 or d2 \ d3. h

Remark 14. If l1 ¼ 0 and l2l3–0, the TVD domain is reduced to a segment on line d1. The previous proof shows in that case
that the minimum ~a is the intersection point d1 \ d2 or the intersection point d1 \ d3. The case l2 ¼ 0 and l1l3–0 is similar.

We precise the position of the minimum with constraint in the next proposition.

Proposition 15. Let ~a be the minimum with the TVD constraint. Then we have the following alternative:

(i) If d3 is above the intersection point G3 between d1 and d2 ðG3 � s3 6 l3Þ then ~a ¼ G3.



(ii) If d3 is under the intersection point G3 between d1 and d2 ðG3 � s3 > l3Þ then ~a belongs to d3.
Proof. We first study the situation for the line d1 where we prove that ~a does not belong to d1 except point G3. The same
argument holds for line d2. Since G3 ¼ d1 \ d2, we have G3 � s1 ¼ l1 and G3 � s2 ¼ l2. Consider now a point a on the segment
d1 \ TVD (supposed non-empty). Using the parametrization
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a ¼ G3 þ ks?1 ; ð29Þ
we obtain
EðaÞ ¼ EðG3 þ ks?1 Þ ¼ FðkÞ ¼ k2ðs?1 � s2Þ2 þ ðl3 � G3 � s3 � ks?1 � s3Þ2: ð30Þ
We get a convex parabolic curve and the minimum is obtained for k0 given by
k0 ¼
ðl3 � G3 � s3Þ s?1 � s3

ðs?1 � s3Þ2 þ ðs?1 � s2Þ2
:

Due to the orientation convention s?1 � s3 > 0, any point a 2 d1 \ TVD satisfies k 6 0.

Case (i) If d3 is above G3, i.e. G3 � s3 6 l3 then k0 P 0 and we deduce that the minimum on the segment d1 \ TVD is obtained
at point k ¼ 0 since k has to be non-positive.

Case (ii) If d3 is under G3, i.e. G3 � s3 > l3 then k0 < 0. On the other hand, we can write the point G2 ¼ d1 \ d3 in the form
G2 ¼ G3 þ ms?1 and relation G2 � s3 ¼ l3 leads to
m ¼ ðl3 � G3 � s3Þ
s?1 � s3

< 0:
We obtain
k0

m
¼ ðs?1 � s3Þ2

ðs?1 � s3Þ2 þ ðs?1 � s2Þ2
< 1:
We conclude that m < k0 < 0 and the minimum of E on the segment d1 \ TVD occurs for k ¼ m, thus the minimum belongs
to d3. h

The first situation corresponds to the choice ~a ¼ G3 whereas the following proposition completes the second assertion.

Proposition 16. Assume that d3 is under point G3. Line d3 is parted into three pieces: dc
3 is the segment d3 \ TVD; d�3 is the left part

of d3 with respect to dc
3 while dþ3 is the right part of d3 with respect to dc

3 (see Fig. 6).

Let â be the minimum of functional EðaÞ under the constraint a 2 d3. We have the following situations:

� case 1: if â 2 d�3 then ~a is the left bound of segment dc
3.

� case 2: if â 2 dc
3 then ~a ¼ â,

� case 3: if â 2 dþ3 then ~a is the right bound of segment dc
3.
Proof. Let us denote by s?3 the orthogonal normalized vector to s3 such that s?3 goes from the left to the right (see Fig. 6). Line
d3 can be parameterized by using a free parameter k
a ¼ ba þ ks?3 : ð31Þ
On line d3, functional E is then given by
EðaÞ ¼ Eðba þ ks?3 Þ ¼ FðkÞ;
where FðkÞ is a parabolic function, strictly decreasing for k < 0 and strictly increasing for k > 0.
If â 2 dc

3, then â 2 TVD. Since Proposition 15 says that ~a 2 d3, we deduce that ~a ¼ â.

If â 2 dþ3 , function FðkÞ is a decreasing function for k such that a 2 TVD. Therefore, the minimum is obtained at the right
bound of segment dc

3. On the contrary, if â 2 d�3 , function FðkÞ is an increasing function for k such that a 2 TVD. Therefore, the
minimum is obtained at the left bound of segment dc

3. h

We conclude this subsection by a summary of optimal slope computation.

� If at least two of the three l coefficients vanish, then â ¼ ð0;0Þ.
� Assume that all l coefficients are positive.

From Proposition 6, â ¼ ð0;0Þ if and only if a21 < 0;a31 < 0 and a32 < 0.Otherwise, using the convention on the local
indexation (a31 > 0 and a32 > 0), we derived the following Table from Propositions 15 and 16:



Fig. 6. Partition of the line d .
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3

Cases
 Optimal slope â
case 1: w ¼ G3 � s3 � l3 ¼ a31l1 þ a32l2 � l3 6 0
 G3 such that G3 � s1 ¼ l1 and G3 � s2 ¼ l2
case 2: w > 0 and l1 �
w

a2
31þa2

32
a31 6 0
 P3

1 such that P3
1 � s1 ¼ 0 and P3

1 � s3 ¼ l3
case 3: w > 0 and 0 6 l1 �
w

a2
31þa2

32
a31 6

l3
a31
â such that â � si ¼ li �
w

a2
31þa2

32
a3i; i ¼ 1;2 and â � s3 ¼ l3
case 4: w > 0 and l3
a31
6 l1 �

w
a2

31þa2
32

a31
 P3
2 such that P3

2 � s2 ¼ 0 and P3
2 � s3 ¼ l3
Remark 17. If one of lk ¼ 0, says l1, and l2l3 – 0, the previous procedure is modified. From Proposition 4 we deduced that
â ¼ ð0;0Þ if and only if a32 < 0. Otherwise, we obtain the following expression for the optimal slope:
if a32l2 6 l3; â ¼ G3 such that G3 � s1 ¼ l1 ¼ 0 and G3 � s2 ¼ l2;

else; â ¼ G2 such that G2 � s1 ¼ l1 ¼ 0 and G2 � s3 ¼ l3:
3.2. Q method and M method

The Q method consists in predicting the value Uij using the collocation point Xij ¼ Qij and we get
Uij ¼ Ui þ ~ai � BiQ ij; j 2 mðiÞ: ð32Þ
The reconstruction is consistent with the linear solutions and satisfies a priori the stability constraint whether ~ai 2 TVDi or
~ai 2 MPi. Nevertheless, the Q method is not optimal. Indeed, flux Fij is an approximation of the exact flux integrated on the
edge Sij, therefore numerical integration using the value at the midpoint Mij provides a better approximation than the value
at Q ij. Consequently, we aim to evaluate Uij at point Mij in place of Q ij leading to the following M method:
Uij ¼ Ui þ ~ai � BiMij; j 2 mðiÞ: ð33Þ
Note that the reconstruction is still consistent with the linear solutions but does not satisfy a priori any stability con-
straint even if the slope belongs to the TVD or MP domain. Theoretical stability is lost but as we shall show in the numerical
test section, the solution remains L1 stable in most of the cases with a better accuracy than the former method using
points Q ij.

4. The multislope technique

All the above second-order method are based on the linear reconstruction (2) where the slope ai computed on element Ki

is used to obtain all the reconstructed values Uij; j 2 mðiÞ. A different approach consists in providing three slopes, one for each
edge of the element, such that we satisfy the two following basic conditions:
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– the reconstruction is consistent for the linear function U, i.e. Uij ¼ UðXijÞ,
– if we have a local extremum at point Bi, we find again a first-order scheme, i.e. the slopes vanish.

We call this method a multislope method since each value Uij is obtained using a specific slope for each j 2 mðiÞ.

Remark 18. We point out that the multislope reconstruction does not provide any piecewise function whereas the
monoslope technique gives a linear function on each cell which satisfies the conservative property.

In the generic finite volume scheme (4), only flux evaluations are of importance but not the shape of the reconstructed
function inside the domain whereas, in the finite element approach, shape functions are essential to construct the matrices
deriving from the variational formulation. Conservativity property of the reconstruction does not apply in the multislope
framework.
4.1. The fundamental decomposition

We first construct the slopes in each direction. To this end, we introduce the normalized vectors
tk ¼ tijk ¼
BiBjk

jBiBjk j
; k ¼ 1;2;3:
We have the following proposition.

Proposition 19. Assume that the mesh satisfies hypothesis ðHÞ, then the following decomposition holds:
t1 ¼ b12t2 þ b13t3; ð34Þ
t2 ¼ b21t1 þ b23t3; ð35Þ
t3 ¼ b31t1 þ b32t2; ð36Þ
with
bmlblm ¼ 1; ð37Þ
bmlblk ¼ �bmk ð38Þ
for any circular permutation ðm; l; kÞ of (1,2,3) and all the coefficients are negative.

Proof. Hypothesis ðHÞ reads
Bi ¼
X

k¼1;2;3

qkBjk ;
with qk > 0 and q1 þ q2 þ q3 ¼ 1. We then deduce
0 ¼
X

k¼1;2;3

qkBiBjk ¼
X

k¼1;2;3

qkjBiBjk jtk:
Since qkjBiBjk j > 0, we conclude that all the coefficients bij are negative. Relations (37), (38) are proved as in Proposition 3. h
4.2. Multislope method with the Q ij points

To build the multislope method, two sets of slopes are introduced. We define the downstream slopes with respect to point
Bi in direction tijk by
pþijk ¼
Un

jk
� Un

i

jBiBjk j
; k ¼ 1;2;3; ð39Þ
and we define the upstream slopes by
p�ij1 ¼ b12pþij2 þ b13pþij3 ;

p�ij2 ¼ b21pþij1 þ b23pþij3 ;

p�ij3 ¼ b31pþij1 þ b32pþij2 :
Note that the downstream slopes pþijk correspond to an approximation of the directional derivatives in the tijk directions.
We now give a general definition of a limiter to provide L1 stability for the reconstruction.

Definition 20. A function ðp; qÞ ! hðp; qÞ is a limiter if it satisfies the properties
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hðp;pÞ ¼ p; 8p 2 R; ð40Þ
hðp; qÞ ¼ 0; 8p; q 2 R with pq 6 0; ð41Þ
hðp; qÞ ¼ hðq; pÞ; 8p; q 2 R: ð42Þ
For example the minmod limiter
hðp; qÞ ¼ 0 pq 6 0;
hðp; qÞ ¼minðp; qÞ p P 0; q P 0;
hðp; qÞ ¼maxðp; qÞ p 6 0; q 6 0

8><>:

satisfies the properties. Other limiters like Van Leer’s limiter, superbee limiter also satisfy the properties (40)–(42) (see [21]).

Let us define the limited slopes in the tij direction by
pij ¼ h pþij ;p
�
ij

� �
; j 2 mðiÞ: ð43Þ
The multislope method reads
Uij ¼ Ui þ pijjBiQ ijj; j 2 mðiÞ: ð44Þ
Proposition 21. Assume that the mesh satisfies hypothesis ðHÞ. Then the reconstruction is consistent for the linear solution and we
have a first-order scheme at the extrema.

Proof. To prove the first assertion, let us consider a linear function UðXÞ ¼ U0 þ L � X. The downstream slope is given by
pþijk ¼
L � BiBjk

jBiBjk j
¼ L � tk
and the linearity of function U yields
p�ij1 ¼ b12pþij2 þ b13pþij3 ¼ b12L � t2 þ b13L � t3 ¼ L � ðb12t2 þ b13t3Þ ¼ L � t1 ¼ pþij1 :
We conclude from property (40) that pij ¼ pþij and finally we get Uij ¼ UðQ ijÞ.
To prove the second assertion, let assume that Ui is a local minimum. All the slopes pþij are non-negative since

Uj P Ui; j 2 mðiÞ. Under hypothesis ðHÞ, coefficients bij are negative hence p�ij are non-positive. In consequence, property (41)
yields pij ¼ 0 and the scheme is reduced to a first-order one. h
Remark 22. The particular choice of the minmod limiter provides a TVD reconstruction in each segment ½Bi;Bj�. Indeed, if
Ui 6 Uj, we have Ui 6 Uij 6 Uref

ij 6 Uji 6 Uj (see (19) for definition of Uref
ij ).
4.3. Multislope method with the Mij points

The numerical flux Fij is an approximation of the exact flux integrated on edge Sij. Numerical integration using midpoint
Mij for the quadrature formula provides a second-order approximation. Therefore, better accuracy shall be obtained using Mij

in place of Q ij. We then consider a new set of vectors (Fig. 7 left),
rk ¼ rijk ¼
BiMijk

jBiMijk j
; k ¼ 1;2;3:
As in the previous section, we have the following proposition.

Proposition 23. Assume that the triangle K 2 T h is not reduced to a segment. Then the non-zero coefficients of the following
unique expansions
r1 ¼ d12r2 þ d13r3; ð45Þ
r2 ¼ d21r1 þ d23r3; ð46Þ
r3 ¼ d31r1 þ d32r2 ð47Þ
satisfy
dmldlm ¼ 1; ð48Þ
dmldlk ¼ �dmk ð49Þ
for any circular permutation ðm; l; kÞ of (1,2,3). Furthermore, since Bi is strictly inside the triangle ðMijÞj2mðiÞ, all the coefficients are
negative.



Fig. 7. Vector rk (left). Decompositions of vector r1 in the basis t1; t?1 and vector t?1 in the basis t2; t3 (right).
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4.3.1. Decomposition of r
Natural directions to compute the slopes are tm ¼ tijm ;m ¼ 1;2;3 since basic information (i.e. the values of Ui) are given at

the centroids. To compute new interpolated values at points Mij, one has to decompose rk with respect to the set ðtmÞm¼1;2;3.
Non uniqueness of the decomposition is clear so we propose a decomposition such that we recover the Q method when Mij

and Q ij coincide.
Let t?k denote a normalized orthogonal vector to tk.
On the one hand, we consider the unique decomposition of t?k in the basis ftm; m–kg (Fig. 7, right)
t?1 ¼ g12 t2 þ g13 t3; ð50Þ
t?2 ¼ g21 t1 þ g23 t3; ð51Þ
t?3 ¼ g31 t1 þ g32 t2: ð52Þ
On the other hand, we decompose rk as
rk ¼ ðrk � tkÞtk þ rk � t?k
� �

t?k : ð53Þ
We get the decomposition of rk thanks to relations (50)–(53):
rk ¼
X

m¼1;2;3

nkm tm; ð54Þ
with
nkk ¼ rk � tk; nkm ¼ ðrk � t?k Þgkm; m–k:
This decomposition satisfies the property:
if rk ¼ tk then nkk ¼ 1 and nkm ¼ 0; m–k:
4.3.2. Construction of the slopes
We first define the downstream slopes qþij as
qþijk ¼
X

m¼1;2;3

nkmpþijm ; k ¼ 1;2;3: ð55Þ
Then we define the upstream slopes
q�ij1 ¼ d12qþij2 þ d13qþij3 ;

q�ij2 ¼ d21qþij1 þ d23qþij3 ;

q�ij3 ¼ d31qþij1 þ d32qþij2 :
We compute the slopes qij using the limiter function
qij ¼ h qþij ; q
�
ij

� �
; j 2 mðiÞ: ð56Þ
We finally define the reconstruction with
Uij ¼ Ui þ qijjBiMijj: ð57Þ
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Proposition 24. The reconstruction is consistent for linear functions.
Proof. Let us consider a function UðXÞ ¼ U0 þ L:X with L 2 R2. By construction, we have pþijk ¼ L:tk. Relation (55) implies thatX
Fig. 8.
Delaun
qþijk ¼ L �
m¼1;2;3

ðnkmtmÞ ¼ L � rk:
Hence we deduce that
qþijk ¼ L � rk ¼
UðMijk Þ � UðBiÞ
jBiMijk j

:

On the other hand, we write for example with k ¼ 1
q�ij1 ¼ d12qþij2 þ d13qþij3 ¼ L � ðd12r2 þ d13r3Þ ¼ L � r1 ¼ qþij1 :
Thanks to property (40), we deduce that qijk
¼ qþijk and thus Uij ¼ UðMijÞ for all j 2 mðiÞ. h

Remark 25. Degeneration to first-order scheme is not guaranteed by the reconstruction at point M if Ui is a local extremum.
Indeed, since the point Bi is strictly inside the triangle with vertices Mij; j 2 mðiÞ, all the coefficients dkm are negative. Therefore
if all the slopes qþijk have the same sign, we deduce that q�ijk qþijk < 0 then qijk

¼ 0 thanks to relation (41). But if all the slopes pþij have

the same sign, the slopes qþijk given by relations (55) do not have a priori the same sign, hence the slope qij might be non-zero.
5. Numerical tests

We present in this section, several numerical tests to check the two new MUSCL methods and draw some comparisons
with the monoslope technique. The numerical study aims to verify the newly implemented capability and to assess its
advantages/disadvantages with regard to the classical discretization methods. A first issue concerns the linear advection
problem where we test the numerical schemes using a regular function (say C3) with and without the limiting procedures
to measure the scheme accuracy. We then perform a similar test with an irregular function using the limiters to observe the
scheme capability to preserve the discontinuity and to respect the maximum principle. A second issue concerns the Euler
system where classical simulations like a one-dimensional Riemann problem, the Mach 3 wind tunnel with step test, and
the double shock reflection test propose by Woodward and Colella [28] are performed. In the hydrodynamic context, we
make the reconstruction using the primitive variables q;u and P to prevent non-positive values of pressure and density
approximations generated by the MUSCL technique.

5.1. Solid body rotation: the regular case

The body rotation problem is considered as a challenging test for transport algorithms. We take V ¼ ð0:5� y; x� 0:5Þ as
the velocity and the unit square as X. For the regular case, we convect a regular compact support function given by
Urðx1; x2Þ ¼
1
4
ðcosð4prÞ þ 1Þ2 if r <

1
4
; Urðx1; x2Þ ¼ 0 if r >

1
4

taking r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 0:3Þ2 þ ðx2 � 0:3Þ2

q
. Monoslope and multislope methods using collocation points Q and M are examined

from the accuracy point of view. For the sake of simplicity, we name Q-methods (resp. M-methods) all the methods where
we use the collocation point Q (resp. point M) for the reconstruction. We evaluate the effective errors in L1 and L1 norms
after a complete revolution at time t ¼ 2p. Three types of meshes are employed: the diagonal mesh, the Scottish mesh
and the Delaunay mesh presented in Fig. 8.

For the diagonal and Scottish meshes, we consider several spatial steps h ¼ 1=10;h ¼ 1=20;h ¼ 1=40;h ¼ 1=80 and
h ¼ 1=160 which correspond to N ¼ 10;20; . . . ;160 with N the number of nodes on each side of the unit square. For the Del-
aunay mesh, we evaluate the spatial step size with
The three type of mesh employed to evaluate the effective accuracy of the schemes: the diagonal mesh (left), the Scottish mesh (center) and the
ay mesh (right).
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h ¼ min
Ki2T h
j2mðiÞ

jKij
jSijj

:

We also characterize the mesh step by the number N of nodes on each side. Note that M ¼ Q for the diagonal mesh
whereas M and Q are different for the Scottish and Delaunay meshes. Consequently, the same method using points Q or
M provides the same error with the diagonal meshes.

Since we expect a second-order scheme, we use the third-order TVD Runge–Kutta discretization in time proposed by Jiang
and Shu [17] such that numerical errors are only attributed to the spatial discretization.
d body rotation test with a regular function. Errors and orders in the L1 norm for MUSCL methods without limiter on diagonal meshes. We recall that
ethods and the Q-methods are identical since M ¼ Q for this meshes.

10 20 40 80 160

7.80e�01 �0.09 8.31e�01 0.14 7.52e�01 0.31 6.05e�01 0.49 4.30e�01
o 5.37e�01 0.76 3.18e�01 1.78 9.27e�02 2.36 1.80e�02 2.27 3.74e�03
i 5.07e�01 0.87 2.77e�01 2.22 5.96e�02 1.97 1.52e�02 1.31 6.15e�03

d body rotation test with a regular function. Errors and orders in the L1 norm for MUSCL methods without limiter on diagonal meshes. We recall that the
ods and the Q-methods are identical since M ¼ Q for this meshes.

10 20 40 80 160

4.03e�02 0.09 3.79e�02 0.26 3.16e�02 0.43 2.35e�02 0.60 1.55e�02
o 3.11e�02 1.13 1.42e�02 2.00 3.55e�03 2.35 6.96e�04 2.23 1.48e�04
i 2.98e�02 1.32 1.19e�02 2.11 2.75e�03 1.71 8.42e�04 1.27 3.50e�04

id body rotation test with a regular function. Errors and orders in the L1 norm for MUSCL methods without limiter on Scottish meshes.

10 20 40 80 160

4.04e�02 0.24 3.42e�02 0.41 2.58e�02 0.56 1.75e�02 0.71 1.07e�02
oQ 2.49e�02 1.33 9.93e�03 1.48 3.57e�03 1.15 1.61e�03 1.13 7.36e�04
oM 4.16e�02 2.64 6.67e�03 2.32 1.34e�03 2.37 2.59e�04 2.15 5.85e�05
iQ 2.25e�02 1.30 9.12e�03 1.38 3.51e�03 1.54 1.21e�03 1.43 4.49e�04
iM 1.93e�02 2.01 4.78e�03 2.26 1.00e�03 1.50 3.53e�04 1.34 1.39e�04
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The solid body rotation test with a regular function. MUSCL methods without limiter on diagonal meshes. Errors in the L1 norm (left) and the L1

ight) versus mesh parameter h.
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5.1.1. Reconstruction without limiters
In the present test, we compute the numerical approximation using a reconstruction where the limiters are cancelled. The

following table gives the schemes we have considered.
Ta
Th

Fig
L1

Ta
Th
so

Ta
Th
First
ble 4
e solid body rotation test with the regular function. Errors and orders in the L1 norm

N 10 20 40

First 6.98e�01 -0.08 7.38e�01 0.23 6.28e�
MonoQ 4.25e�01 0.69 2.63e�01 1.27 1.09e�
MonoM 3.75e�01 1.22 1.61e�01 2.24 3.40e�
MultiQ 4.17e�01 0.72 2.54e�01 1.25 1.07e�
MultiM 3.20e�01 1.81 9.15e�02 1.80 2.63e�
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. 10. The solid body rotation test with a regular function. MUSCL methods withou
norm (right) versus mesh parameter h.

ble 5
e solid body rotation test with a regular function. Errors and orders in the L1 norm for
lutions are always obtained for the mesh with 160 nodes per side both for the monosl

N 10 20 40

First – – 3.69e�02 0.28 3.04e�0
MonoQ 2.85e�02 1.36 1.11e�02 1.99 2.80e�0
MonoM 2.83e�02 1.44 1.04e�02 2.27 2.16e�0
MultiQ 2.67e�02 1.45 9.76e�03 2.02 2.41e�0
MultiM 2.62e�02 1.65 8.32e�03 2.18 1.83e�0

ble 6
e solid body rotation test with a regular function. Errors and orders in the L1 norm for

N 10 20 40

First – – 8.20e�01 0.21 7.10e�0
MonoQ 6.26e�01 1.20 2.73e�01 1.74 8.18e�0
MonoM 6.17e�01 1.33 2.45e�01 2.14 5.56e�0
MultiQ 5.90e�01 1.27 2.44e�01 1.89 6.58e�0
MultiM 5.81e�01 1.65 1.85e�01 2.09 4.36e�0
First-order scheme

MonoQ
 The monoslope scheme evaluated at the Q points

MonoM
 The monoslope scheme evaluated at the M points

MultiQ
 The multislope scheme evaluated at the Q points

MultiM
 The multislope scheme evaluated at the M points
for MUSCL methods without limiter on Scottish meshes.

80 160

01 0.44 4.63e�01 0.63 3.00e�01
01 1.15 4.92e�02 1.02 2.42e�02
02 2.45 6.21e�03 2.30 1.26e�03
01 1.63 3.46e�02 1.50 1.22e�02
02 1.50 9.32e�03 1.11 4.32e�03

10−3 10−2 10−1

h

First
MonoQ
MonoM
MultiQ
MultiM

t limiter on Scottish meshes. Errors in the L1 norm (left) and the

MUSCL methods without limiter on the Delaunay meshes. Unstable
ope and the multislope MUSCL scheme using the M-points.

80 160

2 0.51 2.14e�02 0.64 1.37e�02
3 1.93 7.33e�04 1.50 2.59e�04
3 2.30 4.38e�04 – –
3 1.63 7.79e�04 1.40 2.96e�04
3 2.44 3.37e�04 – –

MUSCL methods without limiter on the Delaunay meshes.

80 160

1 0.37 5.51e�01 0.54 3.78e�01
2 1.68 2.55e�02 1.19 1.12e�02
2 2.27 1.15e�02 – –
2 1.00 3.28e�02 1.09 1.54e�02
2 1.70 1.34e�02 – –
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For the monoslope method, the approximation evaluation of Uij consists in computing an approximation ai ofrU at point
Bi using the Least Square method, then we set Uij ¼ Ui þ ai � BiQ or Uij ¼ Ui þ ai � BiMij. For the multislope method, the
ij

approximation evaluation without limiter consists in combining the downstream slope pþij and the upstream slope p�ij to con-
stitute an optimal slope
1

Fig. 11.
L1 norm
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The solid body rotation test with a regular function. MUSCL methods without limiter on the Delaunay meshes. Errors in the L1 norm (left) and the
(right) versus mesh parameter h.

id body rotation test with a regular function. Errors and orders in the L1 norm for MUSCL methods with limiters on Scottish meshes.

10 20 40 80 160

oQ – – 2.19e�02 0.72 1.33e�02 0.83 7.49e�03 0.93 3.93e�03
oQ optTVD 3.24e�02 0.63 2.09e�02 0.76 1.23e�02 0.84 6.85e�03 0.90 3.66e�03
oM – – 2.55e�02 0.61 1.67e�02 0.75 9.91e�03 1.16 4.43e�03
oM optTVD 3.09e�02 0.85 1.72e�02 1.11 7.98e�03 1.08 3.78e�03 0.93 1.99e�03

odQ – – 2.32e�02 0.70 1.43e�02 0.80 8.19e�03 0.88 4.45e�03
odM 2.82e�02 0.93 1.48e�02 1.87 4.04e�03 1.62 1.31e�03 1.76 3.87e�04

AlbadaQ 3.34e�02 0.68 2.08e�02 0.83 1.17e�02 0.96 6.03e�03 0.87 3.31e�03
AlbadaM 2.58e�02 1.44 9.51e�03 1.49 3.38e�03 1.13 1.54e�03 1.16 6.90e�04
LeerQ 3.05e�02 0.82 1.73e�02 0.93 9.11e�03 0.89 4.90e�03 0.99 2.46e�03
LeerM 2.44e�02 1.43 9.03e�03 1.20 3.92e�03 1.16 1.75e�03 1.12 8.03e�04

id body rotation test with a regular function. Errors and orders in the L1 norm for MUSCL methods with limiters on Scottish meshes.

10 20 40 80 160

oQ – – 5.69e�01 0.48 4.08e�01 0.65 2.60e�01 0.77 1.52e�01
oQ optTVD 6.02e�01 0.16 5.39e�01 0.56 3.65e�01 0.72 2.21e�01 0.85 1.23e�01
oM – – 6.31e�01 0.40 4.78e�01 0.60 3.15e�01 0.78 1.84e�01
oM optTVD 5.75e�01 0.29 4.71e�01 0.85 2.61e�01 1.06 1.25e�01 1.00 6.24e�02

odQ – – 5.75e�01 0.50 4.07e�01 0.71 2.48e�01 0.84 1.39e�01
odM 5.41e�01 0.52 3.76e�01 1.14 1.71e�01 1.22 7.32e�02 1.29 3.00e�02

AlbadaQ 6.04e�01 0.18 5.33e�01 0.62 3.46e�01 0.81 1.98e�01 0.87 1.08e�01
AlbadaM 5.11e�01 0.87 2.79e�01 1.49 9.95e�02 0.56 6.76e�02 0.94 3.52e�02
LeerQ 5.67e�01 0.30 4.60e�01 0.76 2.72e�01 0.84 1.52e�01 0.88 8.25e�02
LeerM 4.77e�01 0.95 2.47e�01 1.43 9.18e�02 0.39 7.00e�02 0.97 3.57e�02
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The case pij ¼ pþij seems to be the natural candidate. Unfortunately, v ¼ 0 provides an unstable scheme for rough meshes
ðN ¼ 10;20) while we obtain a stable scheme with v close to 0 for finer meshes ðN ¼ 80;160Þ. We choose coefficient v ¼ 1=3
which provides a stable solution that satisfies the maximum principle.

Tables 1 and 2 give the L1 and L1 errors for the three schemes using the diagonal meshes and a graphical representation is
printed out in Fig. 9. Note that we only present the results obtained with the M-methods since M ¼ Q for such meshes. We
observe an asymptotic error of OðhÞ for the first-order scheme while the second-order scheme with the monoslope recon-
struction provides an error of Oðh2Þ. The multislope method does not provide a full second-order convergence and we ob-
serve an important accuracy discrepancy with the monoslope situation. We think that relation (58) is responsible of the
accuracy reduction and do not provide an efficient approximation of the directional derivative. Coefficients v would certainly
depend on the cell geometry and the adjacent elements in order to obtain a better approximation.
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Fig. 12. The solid body rotation test with a regular function. Errors in the L1 norm versus mesh parameter h for MUSCL methods using limiters on Scottish
meshes with edge values evaluated at the Q-points (left) and at the M-points (right).
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Fig. 13. The solid body rotation test with a regular function. Errors in the L1 norm versus mesh parameter h for MUSCL methods using limiters on Scottish
meshes with edge values evaluated at the Q-points (left) and at the M-points (right).
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We proceed with the Scottish meshes. Tables 3 and 4 give the L1 and L1 errors for the five schemes while the errors are
shown in Fig. 10. Clearly, the Q-methods are less accurate than the M-methods since the numerical integration of the flux at
points Q is a first-order one whereas we get a second-order numerical integration using points M. For the Q-methods, the
multislope method provides a slightly better accuracy but the monoslope method is really more performant at points M
and achieves an effective second-order convergence. The multislope reconstruction at points M suffer of the lack of accuracy
as in the diagonal mesh case.

We now deal with the unstructured Delaunay meshes using Q-methods and M-methods. Numerical errors and orders are
listed in Tables 5 and 6 while the convergence curves are presented in Fig. 11. Like the Scottish mesh case, the collocation
points M and Q differ and the M-methods provide the best convergence order. We get the same accuracy between the
monoslope and multislope methods both at points Q and M. We obtain an effective second-order scheme with the M-meth-
ods. The multislope method works well with anisotropic meshes like Delaunay meshes.

5.1.2. Reconstruction with limiters
We turn to the situation where we compute the numerical approximation of a regular function using the limiting

algorithms. The goal is to measure the limiting effect with respect to the unlimiting case. We only consider the Scottish
mesh where the Q-methods and the M-methods differ. The following table gives the schemes we have employed in the
test.
Ta
Th
me
MonoQ
ble 9
e solid body rotation test with a discontinuo
thods with limiters using the Q-points on Sco

N 10

First 1.53e�01 0.27
0.00
0.71

MonoQ 9.63e�02 0.41
0.00
0.92

MonoQ optTVD 9.95e�02 0.45
0.00
0.94

minmodQ 1.07e�01 0.45
0.00
0.92

Van AlbadaQ 1.05e�01 0.57
0.00
0.93

Van LeerQ 9.59e�02 0.49
0.00
0.97
The monoslope scheme with the Barth limiter evaluated at the Q points

MonoQ opt TVD
 The monoslope scheme with the TVD optimized limiter evaluated at the Q points

MonoM
 The monoslope scheme with the Barth limiter evaluated at the M points

MonoM opt TVD
 The monoslope scheme with the TVD optimized limiter evaluated at the M points

minmodQ
 The multislope scheme evaluated at the Q points with the minmod limiter

Van AlbadaQ
 The multislope scheme evaluated at the Q points with the Van Albada limiter

Van LeerQ
 The multislope scheme evaluated at the Q points with the Van Leer limiter

minmodM
 The multislope scheme evaluated at the M points with the minmod limiter

Van AlbadaM
 The multislope scheme evaluated at the M points with the Van Albada limiter

Van LeerM
 The multislope scheme evaluated at the M points with the Van Leer limiter
Tables 7 and 8 show the L1 and L1 errors while Figs. 12 and 13 prints out the convergence curves obtained using Q-meth-
ods and M-methods. We observe the dramatic effect of the limiter for all the considered schemes. The Monoslope schemes
using the Barth limiter [1, relation (64)] suffer of a huge accuracy deterioration both for the Q-methods and the M-methods.
The TVD optimized monoslope reconstruction at point M gives the best convergence rate of the monoslope family but accu-
racy is strongly reduced with respect to the unlimiting case. For the multislope reconstructions, numerical results indicate
that the limiter choice is very sensitive: for the Q-methods, the less compressive Van Leer function provides the best results
us function. Errors and orders in the L1 norm, minimum values and maximum values obtained for MUSCL
ttish meshes.

20 40 80 160

1.27e�01 0.43 9.42e�02 0.44 6.92e�02 0.52 4.82e�02
0.00 0.00 0.00 0.00
0.94 0.99 0.99 1.00
7.24e�02 0.45 5.29e�02 0.45 3.88e�02 0.41 2.93e�02
0.00 0.00 0.00 0.00
0.94 0.99 1.00 1.00
7.29e�02 0.51 5.13e�02 0.49 3.66e�02 0.48 2.62e�02
0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00
7.81e�02 0.50 5.51e�02 0.48 3.94e�02 0.46 2.87e�02
0.00 0.00 0.00 0.00
0.99 1.00 1.00 1.00
7.07e�02 0.48 5.06e�02 0.49 3.60e�02 0.50 2.55e�02
0.00 0.00 0.00 0.00
0.99 1.00 1.00 1.00
6.83e�02 0.54 4.69e�02 0.51 3.29e�02 0.38 2.52e�02
0.00 0.00 0.00 0.00
0.99 1.00 1.00 1.00



Table 10
The solid body rotation test with a discontinuous function. Errors and orders in the L1 norm, minimum values and maximum values obtained for MUSCL
methods with limiters using the M-points on Scottish meshes.

N 10 20 40 80 160

First 1.53e�01 0.27 1.27e�01 0.43 9.42e�02 0.44 6.92e�02 0.52 4.82e�02
0.00 0.00 0.00 0.00 0.00
0.71 0.94 0.99 0.99 1.00

MonoM 1.04e�01 0.45 7.62e�02 0.44 5.60e�02 0.44 4.12e�02 0.47 2.97e�02
0.00 0.00 0.00 0.00 –
0.92 0.99 1.00 1.00 –

MonoM optTVD 8.93e�02 0.54 6.15e�02 0.57 4.14e�02 0.54 2.85e�02 0.48 2.04e�02
0.00 0.00 0.00 0.00 0.00
0.96 1.00 1.00 1.00 1.00

minmodM 8.65e�02 0.61 5.66e�02 0.54 3.90e�02 0.56 2.65e�02 0.50 1.87e�02
-0.04 0.00 -0.01 -0.01 -0.01
0.98 1.01 1.00 1.00 1.00

Van AlbadaM 8.16e�02 0.69 5.06e�02 0.56 3.43e�02 0.57 2.31e�02 0.53 1.60e�02
-0.02 -0.01 0.00 -0.04 0.00
0.94 1.00 1.00 1.00 1.00

Van LeerM 7.80e�02 0.69 4.84e�02 0.60 3.19e�02 0.58 2.14e�02 0.54 1.47e�02
-0.05 -0.04 -0.01 -0.01 -0.01
1.01 1.03 1.01 1.01 1.01
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where the L1 error is cut by 20 with respect to the minmod limiter case. For the M-method, the situation is not so clear, we
have obtained the best and surprising result with the minmod limiter. In this test, the multislope methods provide smaller
errors than the monoslope methods whatever the limiter choice.
5.2. Solid body rotation: the discontinuous case

We consider the rotation of a cylinder characterized by the discontinuous function
Udðx1; x2Þ ¼ 1 if r <
1
4
; Udðx1; x2Þ ¼ 0 if r >

1
4
;

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � 0:5Þ2 þ ðx2 � 0:3Þ2

q
. The schemes have to satisfy the maximum principle while reducing the viscosity effect in

the vicinity of the discontinuity. Numerical simulations have been performed both with the Scottish meshes and the Dela-
unay meshes using the following schemes
MonoQ
 The monoslope scheme with the Barth limiter evaluated at the Q points

MonoQ opt TVD
 The monoslope scheme with the TVD optimized limiter evaluated at the Q points

MonoM
 The monoslope scheme with the Barth limiter evaluated at the M points

MonoM opt TVD
 The monoslope scheme with the TVD optimized limiter evaluated at the M points

minmodQ
 The multislope scheme evaluated at the Q points with the minmod limiter

Van AlbadaQ
 The multislope scheme evaluated at the Q points with the Van Albada limiter

Van LeerQ
 The multislope scheme evaluated at the Q points with the Van Leer limiter

minmodM
 The multislope scheme evaluated at the M points with the minmod limiter

Van AlbadaM
 The multislope scheme evaluated at the M points with the Van Albada limiter

Van LeerM
 The multislope scheme evaluated at the M points with the Van Leer limiter
The error obtained with the Q-methods and the M-methods using the Scottish meshes are listed in Tables 9 and 10
while the convergence curves are printed out in Fig. 14. On the other hand, we list the L1 errors obtained with the Q-meth-
ods and the M-methods using the Delaunay meshes in Tables 11 and 12 and plot the convergence curves in Fig. 16. We
observe that we obtain the same errors with the Scottish and the Delaunay meshes both using point Q or point M. In
all the situations, we obtain asymptotically a convergence error of type Ch1=2 hence the precision is mainly controlled
by the value of the constant C.

Second-order Q-methods improve the approximation accuracy in comparison with the first-order method but the conver-
gence curves are very similar and none of the method has to be distinguished. The convergence order for the M-methods is
slightly greater than 1/2 and the multislope methods provide the best accuracy, in particulary when the less compressive
limiters are used. The Q-methods and monoslope M-methods satisfy the maximum principle while small over(under)-shoots
appear with the multislope M-methods near the discontinuities.
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Fig. 14. The solid body rotation with a discontinuous function. Errors in the L1 norm versus mesh parameter h for MUSCL methods with limiters using the
Q-points (left) and the M-points (right) on Scottish meshes.

Table 12
The solid body rotation test with a discontinuous function. Errors and orders in the L1 norm, minimum values and maximum values obtained for MUSCL
methods with limiters using the M-points on the Delaunay meshes.

N 10 20 40 80 160

First 1.76e�01 0.36 1.37e�01 0.34 1.08e�01 0.45 7.90e�02 0.49 5.64e�02
0.00 0.00 0.00 0.00 0.00
0.60 0.92 0.96 1.00 1.00

MonoM optTVD 1.09e�01 0.71 6.68e�02 0.51 4.69e�02 0.63 3.04e�02 0.67 1.91e�02
0.00 0.00 0.00 0.00 0.00
0.89 1.00 1.00 1.00 1.00

minmodM 1.17e�01 0.72 7.09e�02 0.50 5.03e�02 0.53 3.48e�02 0.66 2.20e�02
0.00 -0.01 -0.01 -0.01 0.00
0.86 1.00 1.00 1.01 1.00

Van AlbadaM 1.09e�01 0.79 6.32e�02 0.55 4.31e�02 0.54 2.97e�02 0.69 1.84e�02
0.00 -0.03 0.00 -0.01 0.00
0.88 1.00 1.00 1.00 1.00

Van LeerM 1.01e�01 0.84 5.63e�02 0.53 3.91e�02 0.69 2.43e�02 0.73 1.46e�02
-0.01 -0.05 -0.04 -0.03 �0.03
0.93 1.01 1.02 1.03 1.03

Table 11
The solid body rotation test with a discontinuous function. Errors and orders in the L1 norm, minimum values and maximum values obtained for MUSCL
methods with limiters using the Q-points on the Delaunay meshes.

N 10 20 40 80 160

First 1.76e�01 0.36 1.37e�01 0.34 1.08e�01 0.45 7.90e�02 0.49 5.64e�02
0.00 0.00 0.00 0.00 0.00
0.60 0.92 0.96 1.00 1.00

MonoQ optTVD 1.10e�01 0.65 7.02e�02 0.52 4.91e�02 0.58 3.28e�02 0.66 2.07e�02
0.00 0.00 0.00 0.00 0.00
0.89 1.00 1.00 1.00 1.00

minmodQ 1.17e�01 0.65 7.44e�02 0.51 5.22e�02 0.52 3.65e�02 0.58 2.44e�02
0.00 -0.05 -0.02 0.00 0.00
0.84 1.00 1.00 1.00 1.00

Van AlbadaQ 1.12e�01 0.74 6.70e�02 0.54 4.61e�02 0.53 3.20e�02 0.61 2.10e�02
0.00 0.00 0.00 0.00 0.00
0.86 1.00 1.00 1.00 1.00

Van LeerQ 1.03e�01 0.81 5.88e�02 0.56 4.00e�02 0.50 2.82e�02 0.59 1.87e�02
0.00 0.00 0.00 0.00 0.00
0.92 1.00 1.00 1.00 1.00
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  (e)Fig. 15.The solid body rotation test with a discontinuous function on Scottish mesh. Ten isovalues from 0 to 1. (a) the initial function, (b) the monoslopemethod at pointsM, (c) the multislope method with the minmod limiter at pointsM, (d) the multislope method with the Van leer limiter at pointsM, (e) theoptimized monoslope method at pointsM.3768T. Buffard, S. Clain / Journal of Computational Physics 229 (2010) 3745…3776
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Fig. 16. The solid body rotation with a discontinuous function. Errors in the L1 norm versus mesh parameter h for MUSCL methods with limiters using the
Q-points (left) and the M-points (right) on the Delaunay meshes.
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Figs. 15 and 17 show 10 isovalues of the cylinder from 0 to 1 using different limiting strategies with a 40� 40 Scottish
mesh and a Delaunay mesh respectively. Pictures (a) are the initial function with the two meshes while pictures (b) rep-
resent the isovalues after a complete rotation using the classical monoslope MUSCL reconstruction at point M. Pictures (c)
and (d) show the isovalue repartition after the revolution using the multislope method at point M with the minmod and
the Van leer limiter respectively. At last, pictures (e) present the repartition using the TVD optimized monoslope limiter at
point M. Approximations using multislope reconstructions at point M provide the best results but the extrema are not
preserved.

5.3. The double rarefaction Riemann problem

We now deal with the Euler system. We perform the reconstruction with the primitive variables U ¼ ðq;u;v ; PÞ to prevent
non-positive pressure or density approximations. We first consider the double rarefaction Riemann problem which consists
of two symmetric rarefaction waves and a trivial contact wave where the intermediate state density is close to zero for
assessing the numerical performance of the schemes (see [26]). For the two-dimensional situation, we cut the unit square
by the line x ¼ 0:5 and we prescribe UL ¼ ð1;�2:0;0;0:4Þ;UR ¼ ð1;þ2:0;0;0:4Þ on the left and right of the interface such that
we recover the one-dimensional situation in the Ox direction. We perform the simulation with the Scottish mesh ðN ¼ 40Þ
and the Delaunay mesh until we reach the final time 0.15. The HLLC solver of Toro [26] is used to compute the numerical
flux.

Figs. 18 and 19 print out the density and internal energy using the Scottish mesh for the Q-methods and M-methods while
Figs. 20 and 21 show the same situation with the Delaunay mesh.

The first-order scheme provide the worst simulations both for the density and the internal energy. Density range is pre-
served with all the Q-methods and the monoslope M-methods while an overshoot appears with the multislope M-methods.
The internal energy presents oscillations in the area where the gas is close to vacuum in particular with the classical monos-
lope methods. The multislope methods give a good approximation both for the density and the internal energy and we ob-
tain a good result with the Van Leer limiters for the Q-methods family and the optimized monoslope method for the M-
methods family.

5.4. The mach 3 wind tunnel with a step

Woodward and Colella propose in [28] two numerical simulations to evaluate the scheme performance to solve the Euler
system. A uniform mach 3 flow enters in a tunnel which contains a 0.2 length units step leading to complex shock structures.
We use a Delaunay mesh with a number of control volumes equal to 16,714 and close to that of the mesh considered in
Woodward and Colella [28, pp. 130–131]. On the other hand, we employed here the HLL solver to compute the numerical
flux rather than the HLLC solver to avoid the carbuncle phenomena and no particular treatment is performed for the singu-
larity at the corner of the step. We print out in Fig. 22 the density configuration at the final time tf ¼ 4 units employing (a)
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Fig. 18. Solution profiles of the double rarefaction Riemann problem on Scottish mesh using the Q-points. Density (left) and internal energy (right) at time
t ¼ 0:15.
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Fig. 19. Solution profiles of the double rarefaction Riemann problem on Scottish mesh using the M-points. Density (left) and internal energy (right) at time
t ¼ 0:15.
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Fig. 20. Solution profiles of the double rarefaction Riemann problem on the Delaunay mesh using the Q-points. Density (left) and internal energy (right) at
time t ¼ 0:15.
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Fig. 21. Solution profiles of the double rarefaction Riemann problem on the Delaunay mesh using the M-points. Density (left) and internal energy (right) at
time t ¼ 0:15.
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the first-order scheme, (b) the monoslope MUSCL scheme at point Q and (c) the multislope MUSCL scheme at point Q with
the Van Leer limiter. We have also experiment the M-methods but computations may fail since the density and pressure
positivities are not preserved. The multislope method with the less compressive limiter provides sharper shocks, reducing
the local numerical diffusion and we obtain a better resolution of the slip lines.
5.5. The double Mach reflection of a strong shock

The second popular test proposed by Woodward and Colella for high-resolution schemes corresponds to a planar
strong shock meeting a 60� inclinated wall with a wedge (see [28, p. 135] for a detailed description of the physical prob-
lem). We use three Delaunay meshes of spatial steps h ¼ 1=30;h ¼ 1=60;h ¼ 1=120 to draw comparisons with the
numerical experiments of Woodward and Colella [28] and we employed the HLLC solver to compute the numerical flux.
In Figs. 23–25 we plot density contours for the three meshes using the first-order method, the monoslope method at
point Q and the multislope method at point Q with the Van Leer limiter respectively. The first-order scheme gives a poor



representation of the shock structure and a large amount of viscosity smoothes the shocks whereas the second-order
schemes provide cleaner shocks with a reasonable level of numerical dissipation in comparison with the standard
schemes [28,17].
6. Con